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Background

Standard modern book references: 

M.J. Sasena. Flexibility and Efficiency Enhacements for Costrained Global Design 

Optinmization with Kriging Approximations. PhD Thesis University of Michigan, 2002.

T.J. Santner, B.J. Williams, and W.I. Notz. The design and analysis of computer experiments

Springer Series in Statistics. Springer-Verlag, New York, 2003. 

K-T. Fang, R. Li, and A. Sudjianto. Design and modeling for computer experiments. Computer 

Science and Data Analysis Series. Chapman & Hall/CRC, Boca Raton, FL, 2006
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Introduction

DoEDoE: a protocol for designing physical experiments physical experiments in 
order to achieve valid, correct and unprejudiced inferences

Designs based 

on sampling methods

Designs based 

on measures of distance
Designs based 

on the uniform distribution

And for Computer Computer ExperimentsExperiments??

Ideal design strategy: to uniformly spread the points across the

experimental region spacespace--filling designsfilling designs



Introduction

Random sampling Stratified sampling Latin-hypercube 
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Introduction

� How to build a predictor

� How to evaluate the efficiency of the prediction

� How to choose the points of the design

A problem of interest:  the design of experiment, i.e. the choice of a 
training set with good performances when evaluated with respect to 
a statistical index (e.g. Mean Squared Prediction Error, MSPE)



Ordinary kriging on a lattice: the correlation 

function

The underlying model is a parametric model of Gaussian type: 

f′(x): known regression function

ββββ:  unknown regression coefficients

Z(x): Gaussian random field with zero mean and stationary covariance over 

a design space Xd ⊂ Rd, i.e.                                                          where          

is

the field variance, R is the Stationary Correlation Function (SCF) 

depending only on the displacement vector h:

If the space of locations is a lattice, the model is an algebraic 
statistical model
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Ordinary kriging on a lattice: the correlation 

function

Choice of the correlation function: Exponential Correlation Function

θs, s = 1, 2, …, d, are positive scale parameters

p between 0 and 2
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Assumptions in this paper:

� θs=θ, ∀s = 1, 2, …, d: the correlation depends only on the distance h
between any pair of points x and x+h

� p = 1

� 12=Yσ



Ordinary kriging on a lattice: the correlation 

function

(i1,i2) (j1,i2)

(j1,j2)

� Manhattan distance: 

Assumptions: 

� the Gaussian field is defined on a regular rectangular lattice Xd = {1, ... , l}d
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Ordinary kriging on a lattice: the correlation 

function
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Ordinary kriging on a lattice: the output prediction 

( ) ( )xx Z+=Y βOrdinary Kriging model

The kriging model can be considered an empirical bayesian approach to 

computer experiments

Kriging is a linear method of spatial interpolation: the random variable Y(x0)  

is

predicted with a linear (affine) combination of observed random variables 

Y(x1), 

…, Y(xn) in the training set x1, …, xn:

The weights in the l.c. are evaluated according a statistical model on the joint 

distribution of Y0, Y1, …, Yn:( )[ ]ΣΣΣΣββββ 2
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Ordinary kriging on a lattice: the output prediction

Assume Assume ββββββββ and and ΓΓΓΓΓΓΓΓ unknownunknown

A Linear Predictor LP  is unbiased iff:

a0 = 0 and 
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and it is the Best (BLUP) if it minimizes the Mean Squared Prediction Error (MSPE):
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The unknown value of the correlation is estimated from the set of the training points

and plugged in into the formula of the estimator



Classes of Latin Hypercube  designs on lattices

Step  1Step  1
Permutations of the l integers (number of the levels) and construction of 

the matrix l×(l!)d−1 containing all the LH designs with d factors. 

Example:Example: the possible 24 LH designs relative to d = 2 factors each one 

with l = 4 levels

LH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

T
ra

in
in

g
 p

o
in

ts
 

11 11 11 14 14 11 11 11 13 13 13 14 14 13 13 13 12 12 12 14 14 12 12 12 

22 22 24 21 21 24 23 23 21 21 24 23 23 24 22 22 23 23 24 22 22 24 21 21 

33 34 32 32 33 33 34 32 32 34 31 31 32 32 34 31 31 34 33 33 31 31 34 33 

44 43 43 43 42 42 42 44 44 42 42 42 41 41 41 44 44 41 41 41 43 43 43 44 

 



Classes of Latin Hypercube  designs on lattices

Step  3Step  3
Implementation of the Kronecker product between any pair of matrices, so 
the computing of the covariance matrix between any pair of points of the 
lattice is available

Example:Example: covariance sub-matrix of the 11th LH design (lattice points 

(1,3), (2,4), (3,1) and (4,2)) 

Step  2Step  2
Construction of the distance matrix between any pair of points in the 
lattice
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Classes of Latin Hypercube  designs on lattices

Step  5Step  5
Clustering of the LHs according to the same value of the index in the 
previous step. Both the TMSPE and the determinant of the covariance 
matrix are rational function of the parameter t. The rational functions are 
exactly computed with a symbolic software. Designs with the same
function are in the same cluster.

Step  4Step  4
Computation of the statistical index chosen for the comparison: Total 
Mean Squared Prediction Error (TMSPE), Entropy, the Minimax Distance 
and Maxmin Distance, ...

For computing the predictor variances in closed form: 

CoCoA (Computations in Commutative Algebra), see http://cocoa.dima.unige.it

Other computations related with the exponential model for covariances: software 

R, see  http://www.R-project.org/



Classes of Latin Hypercube  designs on lattices

ClassClass 11

ClassClass 22

ClassClass 33

ClassClass 44



Classes of Latin Hypercube  designs on lattices

ClassClass 55

ClassClass 66

ClassClass 77



Results and conclusions

Comments

� Class 6 is the best one (it consists of U-design according B. Tang 
(1993).

These designs are also tilted 22.

� Classes 3,4,7 are essentially equivalent and worse than class 6

� Classes 4 and 5 are essentially equivalent to the cyclic designs 
(Bates

et al. (1996), very recommended for Fourier regression models

� Class 2 is second worse

� Class 1 and 4 consist of regular fractions 42-1

� Class 3 contains regular fractions 24-2 (pseudofactors)

� An LH design is an orthogonal array with strength 1 and vice 
versa



Results and conclusions

� Each cluster has a different performance with respect to the TMSPE criteria 
� The worst case are the two diagonals LHDs (dashed line)

l=3 l=3 levelslevels, , d=d= 2 2 variablesvariables



Results and conclusions

The speed of convergence near θ = 0 (t = 1) is very different!!!

The formal computation allows a precise evaluation of the behavior near
t = 1

l=3 l=3 levelslevels, , d=d= 2 2 variablesvariables



Results and conclusions

l=3 l=3 levelslevels, , d=d= 3 3 variablesvariables



Results and conclusions

l=4 l=4 levelslevels, , d=d= 2 2 variablesvariables

For a given number of factors, the difference increases with the number of levels!!!



Results and conclusions

l=4 l=4 levelslevels, , d=d= 3 3 variablesvariables



Results and conclusions

l=6 l=6 levelslevels, , d=d= 2 2 variablesvariables
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